
Data Management in the Mission Data System

David A. Wagner
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, M/S 301-270

Pasadena, CA, USA
david.a.wagner@jpl.nasa.gov

Abstract - As spacecraft systems evolve from simple
embedded devices to become more sophisticated
computing platforms with complex behaviors it is
increasingly necessary to model and manage the flow of
data, and to provide uniform models for managing data
that promote adaptability, yet pay heed to the physical
limitations of the embedded and space environments. The
Mission Data System (MDS) defines a software
architecture in which both control theory and end-to-end
data management provide the primary guiding principles.
This paper describes how the MDS architecture facilitates
data accountability and storage resource management.

Keywords: data management, data accountability,
resource management, mission data system, MDS.

1 Introduction
 As space missions become more complex with ever
greater demand for automation, increasingly tight
interoperability requirements between robotic vehicles, and
unprecedented levels of human-robot interaction, the size
and complexity of the data systems needed to manage them
must also evolve.
 An embedded control system, and particularly one
that is remotely controlled, has two primary
responsibilities: to effectively translate the intent of remote
operators into actions, and to return information describing
what happened. For scientific spacecraft, this can be
summed up in a single statement: make good science
observations, and return the results to where we can use
them. While control is central to this process, it is equally
a problem of data management. The data management
challenge is to produce and store data, process it to convert
it to more usable forms, move it across space and time and
keep track of it in the process, and manage limited storage
and transport resources. This paper will describe the
Mission Data System data model and explain how it works
with the goal-oriented MDS control architecture to enable
precision data management.
 The Mission Data System (MDS) defines a software
system architecture for remotely operated embedded
control systems. Based in control theory, it defines entities
and relationships needed for state estimation and control.
As the name implies, providing a robust and flexible
framework for data management was one of the key

objectives of the MDS. The references list several other
papers that describe aspects of the MDS control
architecture in more detail [2,3,4].

2 Data Management
 The purpose of a robotic observation platform is to
use its instruments to collect data and return that data to the
humans who run it, usually across unreliable, intermittent,
and latent transport media. The data transport connection
presents a limiting factor to the science the system can do,
particularly in deep space missions where the distances
involved put extreme limits on the amount of data that can
be exchanged, and create signal latencies measured in
hours. Thus, it becomes critical to design a system that can
effectively manage the process of making the observations
in the first place, and ensuring that the resulting
measurements are returned intact. The system has to be
robust enough to get the maximum data back even in the
face of a variety of possible failures such as a lost
communications session, various hardware failures, or a
system reboot. Because of these constraints, observations
are usually planned out in great detail.
 Even when execution proceeds nominally it is
difficult to determine if all the data that could have been
recovered was recovered. This turns out to be a tricky
problem in traditional robotic data systems for a couple of
reasons. One is that telemetry systems often collect and
transport data in unlabelled pieces mixed in with other
data, so without intimate knowledge of workings of the
instrument, the observation, and the telemetry system, it is
difficult to know whether the recovered data are complete.
Specifically, it is difficult to know what was lost.
 Secondly, and perhaps more important, is the fact that
typical command-oriented control systems do not retain
any information about the intent of the observations. This
is because mission planners distill activity plans into
commands, and then merge and sequence those commands
with ones from other activities into a compact executable
command sequence. This process removes information
about what was really intended and where one observation
ends and another begins. In space systems this usually
happens on the ground. As an analogy, consider that it is
difficult to infer a programmer's intent from looking at the
compiled machine code. If everything works as planned, it
may be possible to determine that the original plans were

achieved. But, when the inevitable anomaly occurs, it
becomes very difficult to infer what part of the plan was or
was not completed or what happened to the data. These
were the types of problems that the Mission Data System
was designed to solve.

3 Mission Data System
 The Mission Data System was designed as a
framework for building complete end-to-end data and
control systems – not just the embedded part. Three top-
level design principles were brought to bear:
• A control architecture based on explicit representation

of controllable state [6, fig. 1].
• An architecture for the expression of control intent

through the use of goals [3].
• A layered, integrated symmetrical data management and

transport system.
 The following section will briefly describe these
principles, how they apply to the MDS system, and how
they combine to enable data accountability.

3.1 State Variables and State-Based Control
 The Mission Data System's control architecture
centers around the concept of state variables which provide
common access to data representations of the physical
states being controlled, including abstractions such as
position and orientation, down to such primitive states as
the position of a switch.
 A state variable must be able to represent a given
state continuously over time for any time of interest to the
control system. Ultimately, the purpose of the control
system is to cause this state timeline [fig. 2] to coincide
with an intent timeline as expressed through the goals.
That potentially means that a state variable needs to be able
to represent a state over an infinitely long timeline from the
distant past to the distant future. The representational

requirements for any specific state variable depend on how
the state is to be controlled. In practice, for the purposes of
control, it may only be necessary for a state variable to
provide a representation of the latest estimate of state.
However, achieving a goal can sometimes require looking
at estimates of state over an interval of time into the past.
To allow planning into the future a state variable might
have to provide information about extrapolated or
predicted states, or state projections. State variables can
also provide a historical record of what actually happened
in the past in order to provide evidence for the estimation
of some other state. For example, a record of thruster
firings might be needed to compute trajectory. This
historical record is also useful, in the form of telemetry, for
later analysis of what actually happened.

Figure 3State Timeline

Don’t
Know

Don’t
CareOFF

ON

OFF

ON

OFF

ON

OFF

ON

Past Future

time

continuous-valued variable

discrete-valued variable

Now

History compared to plans Predictions informed by plans

Don’t
Know

Don’t
CareOFF

ON

OFF

ON

OFF

ON

OFF

ON

Past Future

time

continuous-valued variable

discrete-valued variable

Now

History compared to plans Predictions informed by plans

Figure 2MDS State Control Architecture

State
Control

Hardware
Adapter

Mission Planning &
E ti

Telemetry

System
Under
Control

Control
Goal

Repor
t

Sens

State
Estimation

Act

Measurements
& Commands Commands

State
Functions State

Values

Knowledge
Goal

State
Knowledge

Models
State

Control

Hardware
Adapter

Mis

 Control intent is expressed in MDS through the use of
goals, which are defined as constraints on particular states
over time. Through the use of goals, state variables can not
only represent values that record past history, they can also
represent intended future values as expressed in the goals.
So, a state variable can be queried about future intended
states: given your current set of goals, what state do you
intend to be in at future time t?
 The MDS control architecture requires that a given
state variable must have exactly one estimator whose job it
is to determine the state value as a function of the available
evidence (other state values, measurements, and commands
that have been issued by controllers).

sion Planning & Execution

Telemetry

System
Under
Control

Goal

Report

Sens

State
Estimation

Act

Measurements
& Commands Commands

State
Functions State

Values

Goal

State
Knowledge

Models

Figure 2 State Timeline

Figure 1 MDS Control Architecture
 The abstraction of the value function allows a given
state variable to represent its values using different kinds of
value representations over time. Different value functions
can provide different levels of quality (precision, accuracy,
uncertainty, or viewed from a data management
perspective, size and complexity) over different periods of
time. A state variable can provide high-resolution
descriptions of state when high-precision control is needed,
and lower-resolution representation when lower-resolution
control is required. It can provide data when the state is
being actively controlled, and no representation at all (i.e.,
unknown) otherwise.
 Beside acting as a container for the state
representation, the state variable is also responsible for
providing transformational methods, or views, that allow
users of that state to access it efficiently. Views make it

possible to keep the internal state representation distinct
from what is presented to external users. For example,
position along with all of its derivatives (velocity,
acceleration) would typically be represented as a single
complex state. If there were users who only needed to see
the acceleration, a view could be provided to extract that
element of the value and return it separately, possibly
providing a more efficient interface for that user. A view
could also apply a static transformation such as a units
conversion.

3.2 Value History

 A value history is simply a container for the data
representation of a state value timeline within a state
variable or a measurement or command value timeline.
Value histories can be specialized to efficiently represent
just the minimal extent of a state timeline that might be
needed for a given state. Value histories can be specialized
for continuously-represented states (intervallic histories),
or for sample histories represented by a series of discrete
values (discrete histories). Discrete value histories can be
used in components other than state variables, such as
hardware adapters, to record discrete samples such as
science or engineering measurements, or commands.
 Abstractly, the value history also provides an
interface to deep storage and data transport. As such it can
be viewed as a simple database mechanism. It provides a
cache of values for immediate use, and a mechanism for
pushing those values out to more efficient long-term
storage. It provides the discrete values or value functions
(and the query mechanisms for retrieving them from
timeline containers) to service the component's interface
requirements, and it provides the mechanism to bundle
segments of the timeline into products for storage and
transport.
 One of the main jobs of the value history is to
maintain a balance between the amount of data being
cached in active memory in a form most readily useful to
the control system versus the amount of data stored as
products in more compressed or more persistent storage.
In many cases the control system might need only a current
estimate of the state under control, so the value history can
push all older values out to storage for transport, or delete
them as needed. But the abstraction allows for more
complex interactions as needed. A value history of camera
observations could, for example, immediately copy all
images out to persistent storage and then retrieve them
individually for analysis. This simple interface allows the
system to easily move data between different storage media
to manage resources.

3.3 Product-Oriented Data Management

 Products bundle state data into manageable chunks
that are meaningful to the application, and that are
relatively efficient to store and transport. These bundles
can incorporate compression and can be sized arbitrarily to
optimize the particular transport or storage properties of the

particular system. Thus, a product is essentially a file with
some associated metadata describing the data it contains.
 Product-oriented data management is already coming
into common use in space missions as exemplified by the
Mars Exploration Rovers (MER), and Deep Impact
missions. While neither of these missions explicitly use
any of the other MDS control architecture features, they
both produce data products onboard, keep track of the
content and meaning of those products through the use of
external metadata, and employ a transport protocol to copy
those products to the ground. The Consultative Committee
on Space Data Systems (CCSDS) has gone so far as to
develop an international standard product (file) transport
protocol (CCSDS File Delivery Protocol, or CFDP [5]),
suggesting a certain level of maturity and industry
convergence around this concept.
 The principle advantage of product-oriented data
management is that it allows developers and operators to
produce data in a form more naturally related to the
observations and activities being performed by the
spacecraft. Specifically, products tend to allow for more
flexible content organization, eliminating most of the strict
packaging constraints of traditional telemetry. Secondly,
when transport bandwidth is at more of a premium than
local storage, products can be stored and analyzed and
subsequently transported or deleted based on the analysis.
MER, for example, takes high-resolution images of a new
location, stores them, and then derives thumbnail versions
of each for downlink. Operators on the ground then review
the thumbnail images and decide the disposition of the
original images: if they look interesting they plan to send
the full images; otherwise they delete them, or possibly
save them to decide later. One can envision a future
system in which this triage is performed onboard using a
feature-detecting algorithm. This kind of analysis is
impossible in systems where data is stored in the form of
transport frames or packets because information about the
aggregate structure and content of the data is not available
at that level.

3.4 Goal-Oriented Control

 As described in [2,3], state control in MDS is
achieved through the use of goals, which express intent in
the form of constraints on states. Goals that constrain the
system to have knowledge of a given quality about a state
of interest (so the state can be controlled) are generally
referred to as knowledge goals. These are distinguished
from control goals that are used to constrain external
physical states of the system represented by state variables.
 The simplest kind of knowledge goal is one that
simply requires the state to be known (i.e., other than
unknown), which can be achieved by enabling an estimator
to determine a current value of the state. This sort of
control makes it possible to disable the production of state
estimates when they aren't needed, possibly saving power,
memory and processor resources.

 An example of a knowledge goal would be a
constraint to have an estimate of a given temperature with a
standard deviation of less than 1 deg C within a given time
period, or to have knowledge of a switch position with
95% certainty in a given time period.
 The distinction between knowledge goals and control
goals is made mostly for descriptive purposes because in
practice they're usually expressed as part of the same goal.
That is, for many control goals where the knowledge
quality can vary it doesn't make sense to express a control
goal without explicitly qualifying a knowledge requirement
as part of the goal. So, a goal to point the camera at a
target with an accuracy of 0.1 degrees only makes sense if
you ensure that you actually know the pointing state well
enough to control it to that degree of accuracy. Knowledge
goals are primarily used to control the estimators that
produce state information.

3.5 Goal-Oriented Data Control

 Details describing how much data has actually been
created, and where and how it is stored are called the data
state. Because these details are inherently part of the
control system rather than the system under control, they
represent a special case of states that need to be controlled.
thus, data states are represented by specialized state
variables that cannot have any history or meta state of their
own, but they can be controlled using specialized data
goals.
 The concept of data state can include information
about how and where the data are stored, what downstream
processing such as compression has been performed. It can
include metadata labels describing transport intent (where
it needs to go, how important it is to get it there), and
transport status (whether, or how completely transport has
been accomplished). So, a data goal might constrain a
value history to produce telemetry, or to store certain
values persistently. Data goals might also constrain the
amount of memory available to a given value history.
 Not all state variables have or require any data state.
In many cases it is possible to design a control loop where
the state representation and the quality of this
representation are static. For very simple control systems
this might not even compromise efficiency. For example, a
thermostat may only really need to know a reasonably
current value of the temperature in order to control it in a
realtime control loop. Thus, the implementation of this
state variable might reasonably optimize away its ability to
answer questions about values in the past or future, or to
represent values with different precisions. If the state is
simple enough and no telemetry is needed, then no data
state is needed.
 Management of the amount of state data that is
collected for transport is done using data goals, or
constraints on the data states of value histories. Data goals
specifically constrain attributes of the data state that are
affected after the data is produced, such as how long the

information is retained in memory, or how much of it
should be packaged for transport.
 Data goals can be used to constrain the amount of
history that is remembered for a given state, measurement,
or command, or the quality of the data persistence (e.g.,
how recoverable is that state value after a processor reset).
They can constrain activities that package the values for
transport, and processes that would compress the data to
maintain a given quantity of history within a given storage
constraint. Data goals can indirectly influence data
transport, but because of the complexity of the transport
process they have to do so in a particular way, as discussed
in the following section.

3.6 Data Transport

 Data transport is in general an unreliable process
because bits sent across any medium can be lost or
corrupted in transit. This is particularly true of space links
where extremely long distances are involved. The goal of
data transport is primarily to have the data (all the data, and
exactly the data) at the receiving end of the link. This
requires coordinated actions on both ends of the link.
Ideally, an automatic reliable transport protocol would be
used to send the data between deployments. But the long
latencies and bandwidth limits of space communications
often make this impractical. A goal-based system would
use a similar protocol except that the decision to request
retransmission of missing pieces would be under the
control of another goal. Thus, the system could reason
about the relative priority of completing one goal versus
proceeding on to something else (and on the ground it
would possibly give human operators a chance to adjust the
priorities). So, the goal to have data on the ground would
elaborate into some goals on the ground system (to wait for
the data), and some goals on the spacecraft to try to send
the data. The only control actions available on the
spacecraft are to try to send the data and then wait for some
external acknowledgment that it was received, or that the
goal failed, Once the transport goal is completed
(positively or negatively), the system is free to recover the
storage space by deleting the local copy of the data.

3.7 Data Management

 Data goals provide a mechanism to achieve two key
requirements that enable data accountability: they can
provide information to associate the transportable data to
the observation requests, and they associate requests with
models that can be used to predict how much data to expect
when a given goal is accomplished. For example, a goal to
take a picture implies a subgoal to store the image data
whose size can be inferred from the characteristics of the
camera or the picture-taking goal. Every goal created in the
planning process and uplinked to the spacecraft has a
unique identifier. Data products created as the result of a
goal execution can be explicitly and persistently labelled as
being that goal's products, allowing the ground system to
unambiguously associate them with the original
observation request. Goals can directly or indirectly cause

data to be produced. This information by itself allows the
products to be identified and reconstructed on the receiving
side.
 In the case of science observations where the point of
the observation is to return data, the goal can explicitly
specify the products to be returned. Goals such as this
make the planning process much simpler because they
elevate data production and associated resource usage from
a side-effect to a first-class intent. If the original goals are
met, the expectations expressed in the goal can be matched
up with the received data to determine overall success.
 Indirect data production can result from goals
whose main purpose is to effect some physical control on
the system, or perform some high-level operation. The
MDS goal-oriented planning process allows high-level
goals to be elaborated into supporting lower-level goals.
The hierarchy of parent-child associations is explicitly
tracked to enable traceability of intent. Thus, if telemetry
visibility is required for a control maneuver, the top-level
goal for that maneuver might elaborate a subgoal to
produce the required engineering data products.
Background or default goals could also be used to produce
telemetry products as a default case when no other explicit
goals are in effect.
 When the top-level intent is expressed as a data
goal, resource management also becomes simpler because
the amount of storage and transport bandwidth that will be
needed is a direct function of the size of the product, which
is explicit in the goal. Similarly, the goals can express
relative priorities which can apply transactionally to entire
goals. So, when a resource conflict arises the information
is available to completely stop achieving one goal or the
other, rather than partially failing both.

4 Conclusions
 Preserving intent in the control system through the
use of goals helps to make the control system more robust
and it can provide a way to unambiguously account for the
data. The approach is more robust because it provides
explicit information to guide the system's ability to reason
about the relative priorities data producing activities that
use resources like storage or bandwidth, and it provides an
explicit way to associate all of these sub-activities with the
parent goal of getting the observations to the users.
 These additional capabilities come with some cost, of
course. The metadata required to associate data with goals
adds overhead against already extremely limited storage
and transport resources in an embedded system. But these
capabilities provide ways to automate expensive human-
intensive processes that currently are among the largest and
most critical parts of operating a robotic space mission. For
a given system a balance must be reached between the cost
to develop the goals and the additional frameworks needed
to manage data against the cost savings and potential for
more science that can be achieved with the same class of
platform. For missions that depend on reliable and
verifiable data, it seems like a good investment.

5 Acknowledgements
 The work described in this paper was performed at
the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration. I wish to thank the
rest of the Mission Data System development team who
have participated in the maturation of the described
architectures. In particular I would like to thank Michel
Ingham, Daniel Dvorak, and Robert Rasmussen who
provided inspiration and technical guidance for this paper.

6 References
[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides,

“Design Patterns”, Addison-Wesley 1995.
[2] M.D. Ingham, R.D. Rasmussen, M.B. Bennett,

A.C. Moncada, “Engineering Complex Embedded
Systems with State Analysis and the Mission Data
System”, American Institute of Aeronautics and
Astronautics, Conference on Intelligent Systems,
Sep. 2004.

[3] A. Barrett, R. Knight, R. Morris, R. Rasmussen,
“Mission Planning and Execution Within the
Mission Data System”, Proceedings of the
International Workshop on Planning and
Scheduling for Space, 2004

[4] D. Dvorak, R. Rasmussen, G. Reeves, A. Sacks,
“Software Architecture Themes in JPL's Mission
Data System,” Proceedings of the AIAA Guidance,
Navigation, and Control Conference, number
AIAA-99-4553, 1999.

[5] Consultative Committee for Space Data Systems,
File Delivery Protocol standard.
http://www.ccsds.org, search: “File Delivery
Protocol”.

[6] D. Dvorak, R. Rasmussen, T. Starbird, “State
Knowledge Representation in the Mission Data
System”, Proceedings of the IEEE Aerospace
Conference, 2002

http://www.ccsds.org/

	Introduction
	Data Management
	Mission Data System
	State Variables and State-Based Control
	Value History
	Product-Oriented Data Management
	Goal-Oriented Control
	Goal-Oriented Data Control
	Data Transport
	Data Management

	Conclusions
	Acknowledgements
	References

